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ABSTRACT

Magnetic torquing of spacecraft has been an important mechanism for attitude control since
the earliest satellites were launched. Typically a magnetic control system has been used for

precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for
systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-

biased spacecraft. Although within the small satellite community there has always been interest in
inexpensive, light-weight, and low-power attitude control systems, completely magnetic control
systems have not been used for autonomous three-axis stabilized spacecraft due to the large

computational requirements involved. As increasingly more powerful microprocessors have
become available, this has become less of an impediment. These facts have motivated
consideration of the all-magnetic attitude control system presented here.

The problem of controlling spacecraft attitude using only magnetic torquing is cast into the
form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the
geomagnetic field along a satellite trajectory is not constant, the system equations are time varying.
As a result the optimal feedback gains are time-varying. Orbit geometry is exploited to treat
feedback gains as a function of position rather than time, making feasible the onboard solution of
the optimal control problem. In simulations performed to date, the control laws have shown
themselves to be fairly robust and a good candidate for an onboard attitude control system.
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INTRODUCTION

Magnetic torquing has been used for spacecraft attitude control since the launch of the

earliest satellites. There are many operational spacecraft which use magnetics for
precession/nutation damping, momentum dumping, and large angle maneuvers [1-4]. Also, there

are existing three-axis control systems which use magnetic torquing to maintain spin axis
orientation of a pitch reaction wheel [5]. Use of magnetics has recently been suggested for
libration damping and arbitrary yaw angle control of a gravity gradient stabilized satellite [7].

Complete three-axis attitude control has not been used because of the large computational
requirements involved. As increasingly more powerful microprocessors have become available,
computation has become less of an impediment. This has motivated consideration of the all-

magnetic attitude control system presented here.

We consider a rigid spacecraft without a gravity gradient boom. For the present
discussion, we assume a perfect knowledge of the spacecraft attitude is available. Finally, we
assume the spacecraft is in a near circular orbit and has a nadir pointing nominal attitude.

The geomagnetic field, while essentially constant in an earth-fixed reference frame, is time-
varying in the nominal body reference frame. This introduces a time-varying element into the

linearized system of equations. Because the magnetic torque vector is constrained to always lie
perpendicular to the local geomagnetic field vector, the system appears uncontrollable if fixed at
any instant in time. (When considered over time, it is completely controllable.) This does,
however, limit the achievable closed loop transient reaction speed to the order of magnitude of the
magnetic field time variation. For a nadir pointing satellite in a polar orbit, this is about two cycles
per orbit. The reaction speed should decrease with decreasing orbit inclination because the
geomagnetic field variation decreases in magnitude.

FORMULATION OF THE EQUATIONS OF MOTION
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Linear Quadratic Regulator

Pitch, Roll, Yaw (2-1-3 Euler angles)

Mean angular rate of the local vertical reference frame.

Rotation matrix for an angle 0 about the i-axis.

Rotation matrix from inertial (space) to actual body coordinates.

Rotation matrix from inertial (space) to nominal body coordinates.

Rotation matrix from nominal body to actual body coordinates.

Angular velocity of spacecraft with respect to inertial frame, represented
in the body frame.

Total external torque acting on spacecraft body, in body frame.
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External disturbance torque, excluding gravity gradient torque,

represented in the body frame.

Control torque acting on spacecraft body, represented in body frame.

Magnitude of spacecraft position vector in Earth centered coordinates.

Unit vector from center of Earth to spacecraft, represented in the body
frame.

Spacecraft inertia tensor, represented in the body frame.

ith diagonal element of inertia matrix J.

Control dipole moment of spacecraft, represented in the body frame.

Local geomagnetic field intensity, represented in the body frame.

Local geomagnetic field intensity, represented in the nominal body
frame.

Geocentric gravitational constant, GME = I.t = 3.986 x 1014 m3/s2.

ith component of l_(t).

i th component of da(t).

State vector[R, P, Y, 1_, P, _r]X.

System matrix of linearized equations.

Input coupling matrix of linearized equations.

Quadratic cost functional.

Final time state cost matrix.

State cost weighting matrix.

Control cost weighting matrix.

Solution of the matrix Riccati equation.

Feedback gain matrix, parameterized by time.

Feedback gain matrix, parameterized by (13,_.).

Orbit semi-major axis

Orbit eccentricity.

Orbit inclination.
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co

C0E

Argument of the ascending node.

Argument of perigee.

Angular rate of the Earth = 2r_ radians/24 hours.

Earth fixed longitude of the ascending node.

Argument of latitude (defined in Figure 4).

FORMULATION OF THE EQUATIONS OF MOTION

For the problem at hand, we have considered the rigid-body equations of motion of a nadir-
pointing spacecraft in a circular orbit. Referring to Figure 1, where (S) subscripts indicate inertial
frame, (N) indicates nominal body frame, and (B) indicates actual body frame, we can represent
attitude using 2-1-3 Euler angles as

CB<--S = R3(Y) RI(R) R2(tOot + P)

CB<--S = R3(Y) RI(R) R2(P) R2(c0ot)

(1)

(2)

where Ri(O) is a rotation about axis i through angle O. Since the desired trajectory has Y, R, and P
all zero, we can define an intermediate "nominal" attitude (to be used later) as

which gives

CN<--s = R2(o_ot) ,

CB<--N = R3(Y) RI(R) R2(P) •

(3)

(4)

The angular velocity of the body frame with respect to the inertial frame can be expressed as

f°l_= 0 +R3(Y) 0 +R3(Y) Rl(R)(COo+15 1 •

1 0 0 (5)

To first order in angles and rates this is

+ OoY

= COo+P

Y- COoR (6)

To obtain the first-order approximations to Euler's equations we write

= d (J .(,9.B)+D.B × J t.OB (7)

which, assuming a diagonal inertia matrix, gives
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J1 R + O)o(J1 + J3- J2) Y + O_(J2 - J3) R]
/

J2 _i /

[J3 Y- O)o(J1 + J3 - J2) 1_ + o)2(J2 - J1) YJ (8)

The applied torque _ consists of the gravity gradient, control, and disturbance torques, and can be

represented as

3l't [__.B× (J _B) ]
_B = $.dist, B + _.con, B + _3s3 , (9)

where Rs is the geocentric radius, and RB is the unit vector from the earth to the spacecraft,
represented in the body frame. Since R__ corresponds to the z-axis in the nominal reference frame,

we can use the first-order approximation

(10)

giving

StB = _dist0B + _con,B - (Jl J3) P

0 (11)

Finally, we examine the control torque _on,B. This torque is obtained from the

commanded dipole d.B(t) as

_on.B = __(t) x (12)

where _Hmis the ambient field intensity represented in the body frame. We also have

= CB<--N _H_N(t)= _H__(t) (13)

where the explicit time dependence applied to _H_.N(t) emphasizes that its value is attitude

independent. We would like to replace _ in equation (12) with _H__(t). This is valid as a first-

order approximation because we will later be assigning a control law for __(t) which is linear in

angles and rates.

Combining equations (8),
complete linearized equations of motion as follows:

x_'(t) = d_tt

R --i
I

p

Y

(11), and (12) with the approximation (13), we obtain the
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where

r--

0 0 0

0 0 0

0 0 0

0 G42(t) G43(t)

G51(t) 0 G53(t)

G61(t) G62(t) 0

Jz-J3/,,.ga_31"t/
F41=----_l_..,o-_--_-s]

31.1.[J1-J3/
F52=-_3s3_-_2!

dx(t) ]
d2(t) + _u:list,B

d3(t)

G51(t) =-h3(t) j_l

G61(t) = h2(t) j_l

F63 = -o,'2._J2-J_ /
°IJ 3 ! G42(t) = h3(t) Ji I

F64 = o)./Jl+J3-J2:/
"_ J3 / G62(t) = -hi(t) j_l

fD./Jl+J3-J2 /
F46=- 3 _ ! G43(t) = -h2(t) J11

G53(t) = hi(t) j_l

where

hi(t), h2(t), h3(t) are the components of _H_N(t) ,

dl(t), d2(t), d3(t) are the components of fi(t) .

or, in more compact notation,

d_-tx= Fx + G(t) fi(t) + ._.dist,B (14)

APPLICATION OF THE LINEAR QUADRATIC REGULATOR (LQR)

Since it is desirable to maintain R, P, and Y as close to zero as possible over time, a

reasonable cost function is the standard quadratic performance index [6]. We wish to minimize
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lI'rJ(dB(t)) = lira l_xT(tf) Sf _x(tf) + [_xT(t) A x(t) + d_TB(t) B __(t)] dt
tf__>oo 0 (15)

subject to the state equation

__(t) = F x(t) + G(t) dB(t)

where A is positive definite and B is non-negative-definite, assuming that _-.dist,B = 0 in equation

(14). This problem has a well-known solution given by

_d_B(t)= -BqGT(t) S(t) x(t) , (16)

where the square matrix S(t) satisfies the Riccati differential equation

S(t) = -S(t)F - FTs(t) + S(t)G(t)B-IGT(t)S(t) - A (17)

with the terminal condition S(tr) = St. This equation can be integrated backward in time to give the

time-varying feedback gain matrix K(t) _- -B-_GT(t)S(t). The dependence of S(t) on S f becomes

negligible as tf becomes large, a fact which can be exploited to give K(t) as if we were actually

solving the problem with tf --) _o. That is, tf is chosen far enough ahead that its effect is not seen at

the present, and Sf, which can be any appropriately dimensioned non-negative-definite symmetric

matrix, is set to zero.

Kalman [8] has shown for a time-varying linear system, that if controllability is uniform

over time, the closed loop infinite-time-horizon LQR is exponentially stable.

RESULTS OF NUMERICAL SIMULATIONS

The algorithm outlined above was simulated on an AT-class personal computer. The
Riccati equation was solved numericallly using a fourth-order Runge-Kutta integrator, with time

scaling to keep the system numerically well conditioned. The geomagnetic field was modelled
using an 8th-order spherical ham_onic expansion, as described in Wertz [9]. Nonlinear equations
for rigid body dynamics and gravity gradient torques were used in the plant model. The feedback
control law, while derived for the linearized plant equations, was applied to this nonlinear plant.
The orbit used was near-circular and near-polar.

Cost function matrices A and B were chosen empirically to produce desirable performance.

Attention, however, was restricted to matrices of the form

A ___

where ao, aco, b > O.

%

ao

Ib ], and B = b
b
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In all casestested,the closedloop systemwas stable. A simple check of controller
sensitivitywasmadeby usinga slightly differentmodelfor theclosedloop simulationthanwas
assumedin computing the feedbackgain. Momentsof inertia, orbit eccentricity, andperigee
position were varied, and in eachcasethe systemremainedstable,thoughperformancewas
degradedslightly,asexpected.

The satellitemassproperties,orbit, anddisturbanceparametersusedin evaluationsare
given in Table 1. The disturbancetorquesusedarebasedon a 2 m2 areaanda 30cm centerof
pressureto centerof massoffset. This is conservativefor a satellitewith a maximummomentof
inertia of 27 kg-m2. Figures 2A through 2E show time historiesof Euler anglesfor several
configurations.

APPLICATIONOFGEOMETRICPROPERTIES

Direct implementationof the time-varyinglinear-feedbackcontrol law describedabove
requiresa numericalsolutionof thematrix Riccati differential equation. Sincethe equationis
solvedbackwardfrom afuturetimeto computefeedbackgainsat thepresenttime, theintegration
mustberestartedrepetitively,eachstartingatapointlaterin time,asillustratedin Figure3.

Obviously, integration backward in time is not ideal for real-time implementation.
Fortunately,however,we canutilize the quasi-periodicitydue to orbit geometryto advantage,
makingreal-timeimplementationfeasible.

We wish toparameterizethefeedbackgainK(t) in termsof positionratherthantime. First,
wemakecertainassumptionsabouttheorbit:

(1) Orbit hasaknownsemi-majoraxis,
(2) Orbit iscircular,
(3) Orbit hasknowninclination,
(4) Nodeis inertiallyfixed,
(5) Perigeeis inertiallyfixed,
(6) Orbitalangularrateis known,
(7) Earthrotationalrateisknown,

a

e=0
i

dD./dt = 0
dco/dt = 0

01 o

C0E

These assumptions will typically be valid over several days, which is adequate for our purposes.
Referring to Figure 4, it becomes simple to describe an entire satellite trajectory, r(t), in Earth fixed
coordinates, in terms of only 13(to) and _.(to) at any fixed time to:

Illr(t) = R3(03E(t-to) - _.(to)) Rl(-i) R3(-_(to)- COo(t-to)) 0

0 (18)

The insight to be gained here is that if the trajectory can be completely parameterized in terms of the
ordered pair (13(to),Mto)) then the geomagnetic field history, .U.y(t) can be similarly expressed in

terms of (13,_.). Hence the feedback gain matrix K(to), which depends on H_N(t) from to<t<,,o, can

be written as a function of (_(to),k(to)) only. This function, K(13,_.), is not time varying. Thus,

K(13A) can be computed once and will remain valid permanently.

A real orbit will not satisfy the assumptions exactly. We can, however, drop the
assumption of a circular orbit; the expression in equation (18) then becomes much more tedious,
but the conclusion is the same. That is, the trajectory can be completely characterized by ([_,Z.).
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Whenassumptions(4) and(5) areviolatedby a smallamount,theeffect is to adda slow
time variation to K(13,_.).In an implementationof this system,K(13,_.)must be recomputed
periodically. It is expectedthatrecomputingonceeverythreedayswill beadequatefor atypical
perigeedrift rateof threedegrees/day.ThisrequiresmuchlessCPUtime thanthecontinuousgain
computationof Figure3.

The feedbackgainfunction K(13,_)hasbeencomputedfor severalcases. It appearsto be
reasonablywell behavedandcanberepresentedwith a modestinvestmentin computermemory.
Interestingly, a secondaryadvantageof using (13,_) to parameterize K(-), rather than another
position representation scheme, is that K(I_,_.) is periodic in both 13and _ with a period of 2ft. It
may be possible to reduce data storage requirements by representing K(13,Z.) in terms of Fourier
coefficients.

FLIGHT SOFTWARE CONFIGURATION

A suggested flight software configuration is given in Figure 5. The infrequent updating of
the feedback gains is run as a background task, and the Real Time Control operation is the high
priority task.

Since both tasks require a model of the orbit, periodic orbit updates from a ground station
will be necessary. It is believed that updates on the order of once every seven days should be
adequate for most applications.

CONCLUSIONS

The feasibility of spacecraft attitude control using only magnetic torquing has been
demonstrated. Although the closed-loop transient reaction speed possible with such a system is
fundamentally limited, the attitude requirements of many missions appear attainable. An algorithm
for flight computer implementation has been simulated, demonstrating the feasibility of using this
system with a typical onboard microprocessor. The mechanical simplicity inherent in using
electromagnetics only for control promises to make such a system both cost effective and
mechanically reliable.
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Table1

SystemParametersUsedin TestCasesof Table2

Moments of Inertia

I1 27 kg-m2

I2 27 kg-m2

I3 10 kg-m2

Orbital Rate

COo 1.0473E-3 rad/s

Orbit

Semi-major axis a 1.15537
Eccentricity e 0.004119
Inclination i 89.547

Right ascension of f2N 111.167

the ascending node
Arg. of perigee o_p 71.0035
Node drift rate d.Q_dt -0.047522

Per. drift rate d0Jp/dt -3.004395

Epoch day 130
Time of day 78194.5
Year 87

earth radii

degrees
degrees

degrees
deg/day

deg/day

sec

Orbservation Time Span

Simulations start at 1987, day 131, time = 100 sec.

Disturbances Used in Performance Analysis

Torque (constant in body frame)
+55 dyne-cm in Roll
+100 dyne-cm in Pitch
+10 dyne-cm in Yaw

Residual Magnetic Dipole (constant in body frame)
200 pole-cm in body x-axis
200 pole-cm in body y-axis
200 pole-cm in body z-axis
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YS = orbit normal

Zs - ccntcr of earth to S/C position at time

XN-YNX ZN

YN -- orbit normal

ZN = local vertical (up)
P - Pitch

Y = Yaw

Figurc 1: Coordinate Systcm and Small 2-1-3 Eulcr Angle Definitions

Figure 2a:
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Figure2b:
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Figure 2c: Disturbance torque for this case is a constant -55 dyne-cm in roll, +100 dyne-cm in
pitch, and -10 dyne-era in yaw. A residual dipole of 200 i + 200 j + 200 k pole-cm is
also assumed.
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Figure 2d: The disturbance torque assumed for this case is +55 dyne-cm in roll, +100 dyne-cm in

pitch, and +10 dyne-cm in yaw. A residual dipole of 200 i + 200 j + 200 k pole-cm is
also assumed.
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Figure 2e: Disturbance torque is a constant -55 dyne-era in mU, +100 dyne-cm in pitch, and -10

dyne-era in yaw. A residual dipole of 200 i + 200 j + 200 k pole-cm is also assumed.
The closed loop system will not capture reliably at initial angles larger than 40 ° .
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Figure 3: Iteration necessary when using backward Riccati equation integration in real time.

All vectors represented in Earth-fixed coordinates.

= positive orbit normal

= direction to spacecraft

?
- direction of ascending node

_, _, _ Earth-fixed coordinate axes, with

= north

Notes:

(1) dd_t= -roe, toe = 2x radians/24 hours

(2) For near circular orbit, d13 = orbital angular rate (rad/sec)
._- COo, COo=

Figure 4: Definition of position parameters 13and X.
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Figure 5: Control Software Structure
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